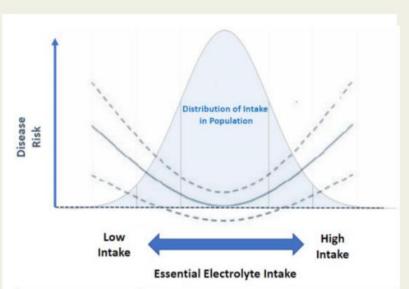


Sal na hipertensão e insuficiência cardíaca, ovos na dislipidémia e café nas arritmias – respostas definitivas ou dúvidas persistentes?

Nuno Cotrim


IFE Cardiologia HDS

Salt in arterial hypertension and heart failure

- Usual sodium intake is between 3.5–5.5 g per day (equivalent to 9 12 g of daily salt).
- Most guidelines suggest a low salt intake, defined as <2-2.3 g of sodium (equivalent to <5-5.75 g of sodium chloride) per day to reduce high blood pressure and to improve cardiovascular outcomes.
- Sodium is an essential nutrient, required for normal cardiovascular physiology and health, as is the case for other essential electrolytes.

Sodium intake categories	Sodium (salt) g/day	Sodium (mmol/day)	~Teaspoons of salt
Low sodium intake	Sodium <2.3 g/day (salt <5.75 g/day)	Sodium <100 mmol	<1 teaspoon of salt
Moderate sodium intake	Sodium 2.3–4.6 g/day (salt 5.75–11.5 g/day)	Sodium 100–200 mmol/day	1–2 teaspoons of sal
High sodium intake	Sodium >4.6 g/day (Salt 11.5 g/day)	Sodium >200 mmol/day	>2 teaspoons of salt

O'Donnell M, Mente A, Alderman MH, et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. *Eur Heart J.* 2020;41(35):3363-3373. doi:10.1093/eurheartj/ehaa586

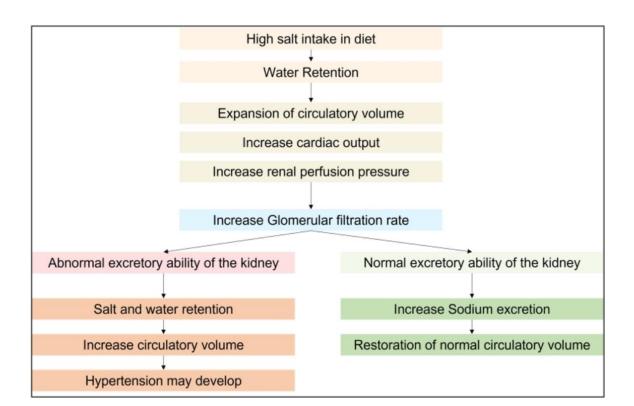
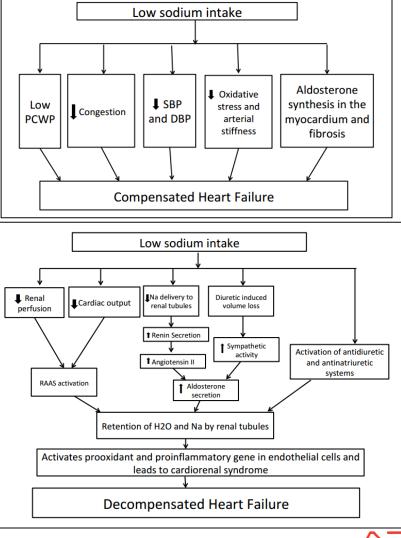
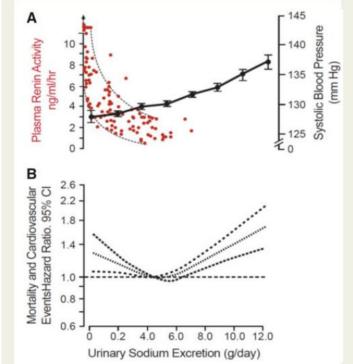

Criterion	Definition
Recommended Dietary Allowance	The average daily dietary nutrient intake level sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) healthy individuals in a particular life stage and gender group
Tolerable Upper Intake Level	The highest average daily nutrient intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population. As intake increases above the UL, the potential risk of adverse effects may increase.
Adequate Intake	A recommended average daily nutrient intake level based on observed or experimentally determined approximation or estimates of nutrient intake by a group (or groups) of apparently healthy people who are assumed to be maintaining an adequate nutritional state

Figure | Relationship of essential electrolyte with health.

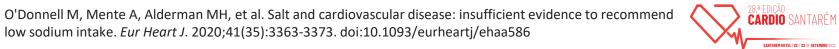


Salt in arterial hypertension and heart failure – High vs Low

Patel Y, Joseph J. Sodium Intake and Heart Failure. *Int J Mol Sci*. 2020;21(24):9474. Published 2020 Dec 13. doi:10.3390/ijms21249474


28.ª EDIÇÃO CARDIO SANTARÉM SANTARÉMINITEL 122 E 23 01 SETENBRO 2023

Salt in arterial hypertension and heart failure


- Graudal et al found a J-shaped association of sodium intake with mortality and cardiovascular events, with an increased risk above 4.6 g/day and below 2.7 g/day.
- The **PURE study** reported a **J-shaped association** between **sodium excretion and cardiovascular event incidence and mortality**, with the **lowest risk** between **3 and 5 g of sodium per day**.

Compared With Usual Sodium Intake, Low- and Excessive-Sodium Diets Are Associated With Increased Mortality: A Meta-Analysis

Niels Graudal,¹ Gesche Jürgens,² Bo Baslund,¹ and Michael H. Alderman³

Figure 2 (A and B) Association of sodium intake with (A) plasma renin activity and systolic blood pressure; and (B) mortality and cardiovascular events (adapted from and O'Donnell et al.⁵¹ and Brunner and Gavras⁵²).

Salt in heart failure

- An analysis of **HART** reported a **higher risk of death and hospitalization** for **HF** among those randomized to **restricted sodium intake**.
- A meta-analysis evaluating reduced sodium intake in patients with HF found no evidence to support or refute benefit or harm.

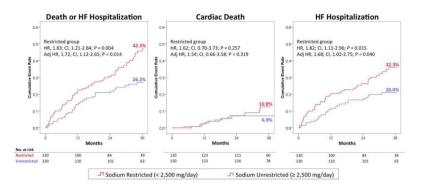
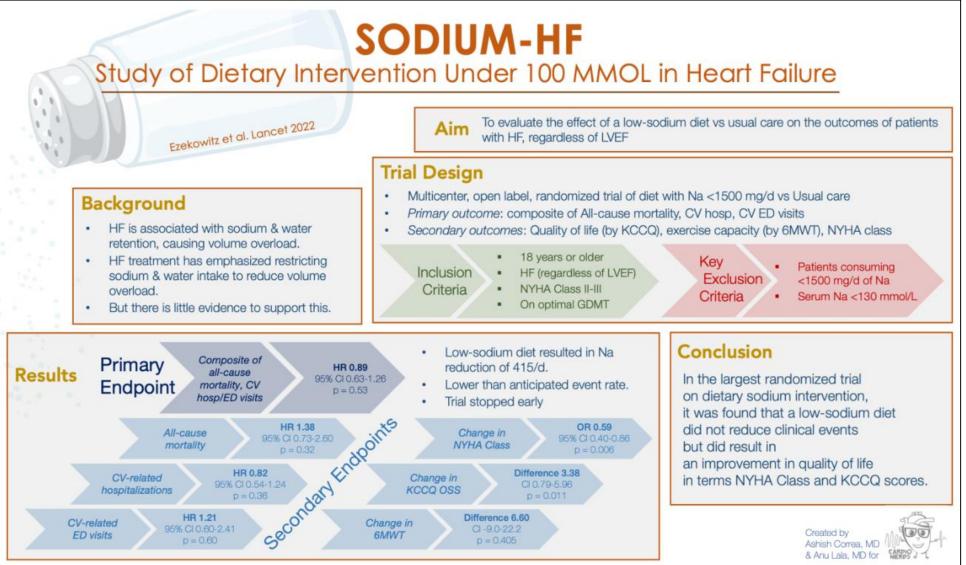


Figure 2. Impact of Sodium Restriction on Heart Failure Outcomes in the Propensity Matched Cohort

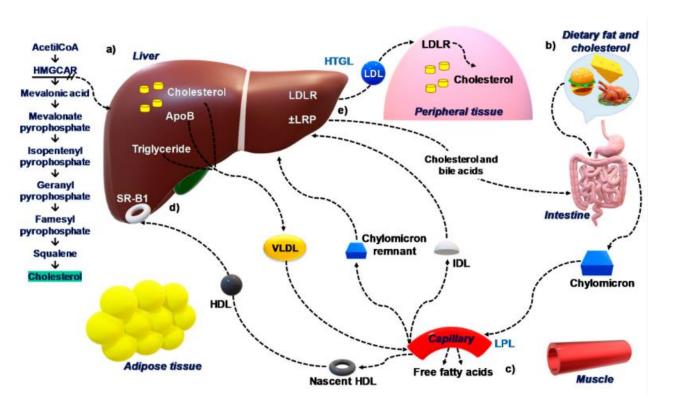
HR, hazard ratio; CI, 95% confidence interval; Adj HR, adjusted hazard ratios for covariates with >10% absolute standardized difference between the propensity-matched

groups.


Source	Country	No. of Participants	Population Inclusion Criteria	Mean Age of Participants, y	Intervention	Comparator	Duration of Study
Inpatient Studies							
Aliti et al, ¹⁵ 2013	Brazil	75	Adult patients with a diagnosis of acute decompensated HF defined as LVEF ≤45%; Boston criteria score of ≥8 points; and LOS ≤36 h after hospital admission	60	2 g/d salt and 800 mL/d water	7.5-12.5 g/d salt and estimated ≥2500 mL/d water	Outcomes assessed until hospital day 7 or until discharge in patients with LOS <7 d; some assessments at day 30
Velloso et al, ²¹ 1991	Brazil	32	Adult patients admitted to hospital with acute illness due to underlying chronic HF	54	2 g/d salt	≤10 g/d salt	Unclear, although appears time taken for patients to compensate
Outpatient Studi	es						
Alvelos et al, ¹⁶ 2004	Portugal	24	Adult patients with mild to moderate chronic HF (euvolemic) defined as LVEF ≤40% with no exacerbations or therapeutic changes in the previous 2 mo	70	100 mmol/d sodium	Maintenance of a diet with usual salt intake	15 d
Colín-Ramírez et al, ¹⁷ 2004	Mexico	65	Adult patients with a confirmed diagnosis of HF defined as decreased systolic and/or diastolic function as determined by ECG criteria	62	Aim of 2.0-2.4 g/d sodium (5-6 g/d salt)	Traditional management of HF, including common dietary advisories regarding decreased sodium and fluid intakes but no specific prescription	6 mo
Colín- Ramírez et al, ¹⁸ 2015	Canada	38	Adult patients with a confirmed diagnosis of HF (reduced and preserved systolic function), NYHA classes II and III, and receiving optimally tolerated medical therapy according to CCS guidelines	66	Aiming for 65 mmol/d or 1.5 g/d sodium (3.75 g/d salt)	Moderate intake of sodium aiming for 100 mmol/d or 2.3 g/d (5.75 g/d salt)	6 mo
Hummel et al, ²² 2017	United States	66	Adults aged ≥55 y with history of systemic hypertension and acutely decompensated HF as primary diagnosis for admission or secondary diagnosis after hospitalization for another reason followed by discharge into the community	72	Daily sodium intake of 1.5 g/2100 kcal; compliant meals for 4 wk after hospital discharge in addition to pamphlet "How to Eat a Low Sodium Diet" and telephone call from study staff at 2 and 3 wk	Usual care including pamphlet, "How to Eat a Low Sodium Diet" and telephone call from study staff at 2 and 3 wk	12 wk
Philipson et al, ¹⁹ 2010	Sweden	30	Adult patients with a history of CHF in NYHA classes II and IV ^a	74	Aiming for a maximum of 2-3 g/d sodium (5.0-7.5 g/d salt) and to restrict fluids to 1.5 L/d	General diet information in accordance with ESC guidelines for heart failure	12 wk
Philipson et al, ²⁰ 2013	Sweden	97	Adult patients with a history of CHF, in NYHA classes II and IV [®]	75	Advice to reduce sodium intake to 2-3 g/d (5 g/d salt) and to limit fluid intake to a maximum of 1.5 L/d	Dietician- or nurse-led standard advice (eg, be aware not to drink too much and use salt with caution)	12 wk; Patients were also contacted by telephone after 10-12 mo by a dietician
Welsh et al, ²³ 2013	United States	52	Adult patients who had a confirmed diagnosis of HF due to left ventricular systolic dysfunction or with preserved systolic function and NYHA classes II and IV ^c	63	6-wk Education intervention with instruction and advice on restriction of sodium diet adherence from the intervention nurse during home visits and telephone calls (no set salt goal set)	Usual care and visited at 3 data collections	6 mo

Mahtani KR, Heneghan C, Onakpoya I, et al. Reduced Salt Intake for Heart Failure: A Systematic Review. *JAMA Intern Med*. 2018;178(12):1693-1700. doi:10.1001/jamainternmed.2018.4673

Salt in heart failure



Eggs and dyslipidemia

• Egg consumption is one of the main dietary sources of cholesterol, but whether individuals who eat more eggs have a worse blood lipid profile remains controversial.

 The association between egg consumption and blood lipid parameters has been explored in several meta-analyses of RCTs, and the results were contradictory.

CARDIO

Eggs and dyslipidemia

MDPI

Article

Association between Egg Consumption and **Cholesterol Concentration: A Systematic Review and**

nses of different dosages of egg consumption on profile: An updated systematic review and /sis of randomized clinical trials

Journal of Food Biochemistry

Meta-A	Table 1. Characteristics of patients in the included studies.						ammadi ¹	
- Man-Yun Li	Trial Male/Femal	Malaffrancia	A see Demos	Intervention		Dertie	Result ([↑] : increased concentration;	— Irzad Shidiar 🔮
		Male/remale	Age Range	Egg Group	Control	- Duration	↓: decreased concentration)	
-	Missimer et al. (2017) [7]	24/26	18–30	2 eggs/day	Oatmeal	28 days	LDL-c↑; HDL-c↑	
	Baumgartner et al. (2013) [40]	34/63	18-65	One extra egg	Regular diet	84 days	TC↑; LDL-c↑	
	Rueda et al. (2013) [54]	27/46	17-20	1 egg/day	No egg	28 days	Statistically insignificant change	
	Harman et al. (2008) [47]	14/31	18-55	2 eggs/day	No egg	84 days	Statistically insignificant change	
	Mutungi et al. (2008) [53]	28/0	40-70	3 eggs/day	No egg	84 days	HDL-c↑	
	Wal et al. (2008) [56]	10/63	25-60	2 eggs/day	Regular diet	56 days	Statistically insignificant change	
	Waters et al. (2007) [57]	0/22	50-77	3 eggs/day	No egg	30 days	TC↑; HDL-c↑; LDL-c↑	
1953 M	Herron et al. (2006) [48]	40/51	21-43	3 eggs/day	Egg substitute	30 days	TC↑; HDL-c↑; LDL-c↑	
Carl	Greene et al. (2006) [46]	13/29	50-80	3 eggs/day	Egg substitute	30 days	HDL-c↑; LDL-c↑	
Nut	Goodrow et al. (2006 [45])	7/26	60–96	1 egg/day	Egg substitute	35 days	Statistically insignificant change	
NES VER	Katz et al. (2005) [51]	30/19	36-73	2 eggs/day	Oatmeal	42 days	Statistically insignificant change	<u>120</u>
	Ballesteros et al. (2004) [36]	25/29	8-12	2 eggs/day	Egg white	30 days	LDL-c↑; HDL-c↑	
EVIER	Chakrabarty et al. (2004) [41]	22/12	19-32	1 egg/day	No egg	56 days	TC↑; LDL-c↑; TC/HDL-c↑	
	Ginsberg et al. (1995) [43]	0/13	22-31	3 eggs/day1 egg/day	No egg	56 days	TC↑; HDL-c↑; LDL-c↑	
MATIC REVIEWS AN	Ginsberg et al. (1994) [44]	24/0	22–31	1 egg/day2 eggs/day4 eggs/day	No egg	56 days	TC↑; LDL-c↑	
act of whole e	Garwin et al. (1992) [42]	42/56	41-48	12 eggs/week	No egg	42 days	TC↓; HDL-c↓; LDL-c↓	
	Sacks et al. (1984) [55]	4/13	18-24	1 egg/day	No egg	21 days	LDL-c↑	

review and meta-analysis of randomized contro

M.X. Wang ^{a,b}, C.H. Wong ^a, J.E. Kim ^{a,*}

^a Food Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Sc ^b Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National Content of Content o Building, 12 Science Drive 2, 117549, Singapore

Mohammad Hossein Rouhani, Nafiseh Rashidi-Pourfard, Amin Salehi-Abargouei, Majid Karimi & Fahimeh Haghighatdoost

WILEY

Eggs and dyslipidemia

Circulation Volume 140, Issue 11, 10 September 2019; Pages e596-e646

Volume 140, Issue 11, 10 September 2019; Pages e596-e646 https://doi.org/10.1161/CIR.0000000000000678

American Heart Association. European Heart Journal (2021) **42**, 3227–3337 doi:10.1093/eurheartj/ehab484

ESC GUIDELINES

ACC/AHA CLINICAL PRACTICE GUIDELINE

2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

Table 9 Food choices to lower low-density lipoprotein cholesterol and improve the overall lipoprotein profile

	To be preferred	To be used in moderation	To be chosen occasionally in limited amounts
Cereals	Wholegrains	Refined bread, rice, and pasta, bis- cuits, corn flakes	Pastries, muffins, pies, croissants
Vegetables	Raw and cooked vegetables	Potatoes	Vegetables prepared in butter or cream
Legumes	Lentils, beans, fava beans, peas, chickpeas, soybean		
Fruit	Fresh or frozen fruit	Dried fruit, jelly, jam, canned fruit, sorbets, ice lollies/popsicles, fruit juice	
Sweets and sweeteners	Non-caloric sweeteners	Sucrose, honey, chocolate, sweets/ candies	Cakes, ice creams, fructose, soft drinks
Meat and fish	Lean and oily fish, poultry without skin	Lean cuts of beef, lamb, pork, and veal, seafood, shellfish	Sausages, salami, bacon, spare ribs, hot dogs, organ meats
Dairy food and eggs	Skimmed milk and yoghurt	Low-fat milk, low-fat cheese and other milk products eggs	Regular cheese, cream, whole milk and yoghurt
Cooking fat and dressings	Vinegar, mustard, fat-free dressings	Olive oil, non-tropical vegetable oils, soft margarines, salad dressing, mayonnaise, ketchup	Trans fats and hard margarines (better to avoid them), palm and coconut oils, butter, lard, bacon fat
Nuts/seeds		All, unsalted (except coconut)	Coconut
Cooking procedures	Grilling, boiling, steaming	Stir-frying, roasting	Frying

ESC/EAS GUIDELINES

Cuidelines on cardiovascular disease Suidelines for the

Coffee and arrhythmias

- Coffee is one of the most widely consumed beverages in the world, representing the liquid extract of coffee beans.
- Anti-oxidant and anti-inflammatory properties.

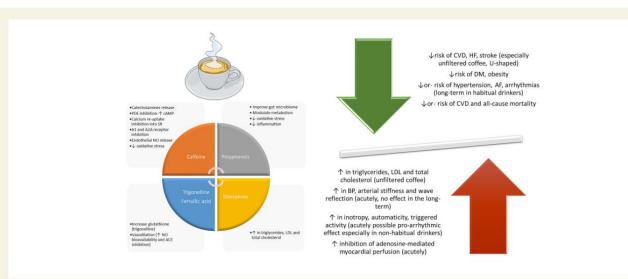
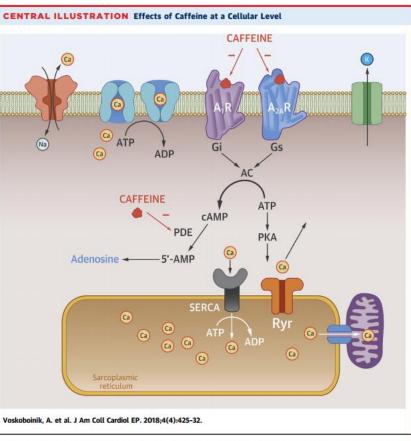
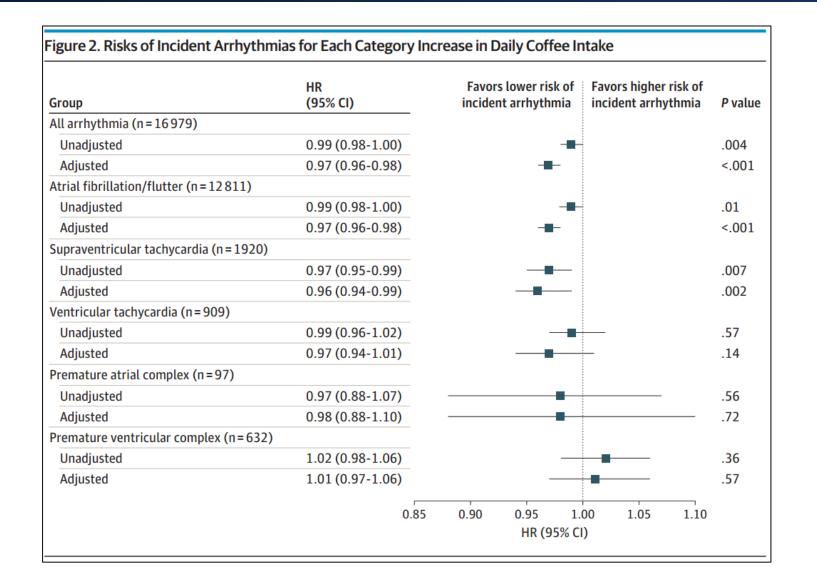
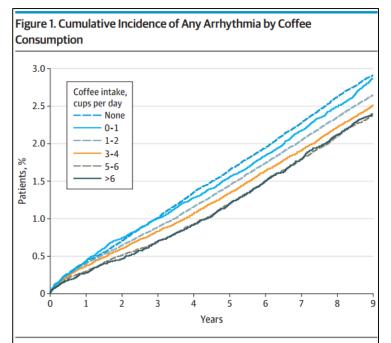



Figure 1 The balance between the beneficial and potentially harmful effects of coffee consumption on cardiovascular risk factors, cardiovascular disease, and death. ACE: Angiotensin-converting enzyme, AF: Atrial fibrillation; BP: Blood pressure; cAMP: cyclic adenosine monophosphate, CVD: Cardiovascular disease, DM: Diabetes mellitus; HF: Heart failure: LDL: Low-density lipoprotein, NO: Nitric oxide, PDE: Phosphodiesterase, SR: Sarcoplasmic reticulum.

Terentes-Printzios D, Vlachopoulos C. Coffee and cardiovascular health: looking through the steaming cup. *Cardiovasc Res.* 2022;118(7):e51-e53. doi:10.1093/cvr/cvac045

5'-AMP = 5'-adenosine monophosphate; AC = adenylate cyclase; ADP = adenosine diphosphate; AR = adenosine receptor; ATP = adenosine triphosphate; Ca²⁺ = calcium; CAMP = cyclic adenosine monophosphate; Gi = inhibitory regulative G-protein; Gs = stimulative regulative Gprotein; PDE = cyclic nucleotide phosphodiesterase; PKA = protein kinase A; Ryr = Ryanodine receptor; SERCA = sarcoendoplasmic reticulum calcium transport ATPase.



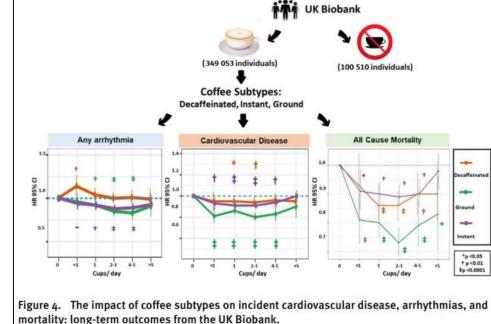

Coffee and arrhythmias

JAMA Internal Medicine | Original Investigation

Coffee Consumption and Incident Tachyarrhythmias Reported Behavior, Mendelian Randomization, and Their Interactions

Eun-jeong Kim, MD; Thomas J. Hoffmann, PhD; Gregory Nah, MA; Eric Vittinghoff, PhD; Francesca Delling, MD; Gregory M. Marcus, MD, MAS

Kaplan-Meier curves for the cumulative incidence of any arrhythmia according to daily coffee intake after adjusting for basic demographic characteristics (age, sex, and ethnicity), body mass index, educational level, other comorbid conditions (hypertension, diabetes, hyperlipidemia, coronary heart disease, congestive heart failure, valvular heart disease, cerebrovascular disease, peripheral artery disease, chronic kidney disease, and cancer), smoking habits, alcohol consumption, tea consumption, and physical activity.


28.ª EDIÇÃO CARDIO SANTARÉM Santarém notel 121 23 hil setemoro 702

Coffee and arrhythmias

 449,563 participants (median age 58 years; 55% women), who were free of arrhythmias or other CVD at baseline, reported their level of daily coffee intake and preferred type of coffee on questionnaires.

• Drinking 1-5 cups/day of ground or instant coffee was associated with a significant reduction in incident arrhythmia.

The lowest risk was with 4 to 5 cups/day for ground coffee (hazard ratio [HR] 0.83; 95% CI, 0.76 - 0.91; P < .0001) and 2 to 3 cups/day for instant coffee (HR, 0.88; 95% CI, 0.85 - 0.92; P < .0001).

Lessons from the trials

Long-term outcomes from the UK Biobank on the impact of coffee on cardiovascular disease, arrhythmias, and mortality: Does the future hold coffee prescriptions?

Kotit Susy*

Coffee beyond arrhythmias

 Coffee drinking of up to 5 cups/day was associated with significant reductions in the risk of incident CVD.

Significant reductions in the risk of incident CAD were associated with habitual coffee intake of up to 5 cups/day, with the lowest risk observed in those who consumed 2 to 3 cups/day (HR 0.89; 95% CI, 0.86 - 0.91; P < .0001).

Significant reduction in the risk of HF and ischemic stroke.
 Lowest risks in those who consumed 2 to 3 cups/day, with HR
 0.83 (95% CI, 0.79 - 0.87; P < .0001) for CCF and HR 0.84 (95%
 CI, 0.78 - 0.90; P < .0001) for ischemic stroke.

GLOBAL CARDIOLOGY

Lessons from the trials

Long-term outcomes from the UK Biobank on the impact of coffee on cardiovascular disease, arrhythmias, and mortality: Does the future hold coffee prescriptions?

Kotit Susy*

Cardiovascular Outcomes	Ground Coffee		Instant Coffee		Decaffeinated Coffee		Overall Coffee Intake	
	n = 82575	%	n = 198062	%	n = 68416	%	n = 349053	
Arrhythmia	5872	7.0	16696	8.4	6737	9.8		
AF/flutter	3269	3.9	9273	4.7	3889	5.7		
CVD	8670	10.5	29751	15	9904	14.5		
CHD	7154	8.6	25051	12.6				
CCF	1976	2.3	7029	3.5	2263	3.3		
Stroke	1114	1.3	3707	1.8	1224	1.7		
Mortality	4511	5.5	15365	7.7	7434	10.9		
			Risk	reduction effe	ct			
Arrhythmia	1-5 cups/day		2-3 cups/day 0.85-0.92 (HR 0.88, CI [0.85-0.92]				2–3 cups/day (HR 0.91, CI [0.88–0.94], <i>P</i> < 0.0001	
AF/flutter	1–5 cups/day		4–5 cups/day (HR 0.85, Cl [0.79–0.91], P < 0.0001)				4–5 cups/day (HR 0.88, CI [0.83–0.94], <i>P</i> < 0.0001	
SVT	2-5 cups/day		4–5 cups/d CI [0.63–0.88]					
VT/VF	2-5 C	ups/day					4–5 cups/day (HR 0.83, CI [0.70–0.97], <i>P</i> = 0.0201)	
CVD	up to 5 cups/day		2-3 cups/day (HR 0.91, CI [0.88-0.94], P < 0.0001)		2-3 cups/day (HR 0.94, CI [0.90-0.99], P = 0.0093)		5 cups/day	
CHD	up to 5 cups/day		2-3 cups/day (HR 0.91, CI [0.88-0.94], P < 0.0001)		2–3 cups/day (HR 0.94, CI [0.89–0.99], <i>P</i> = 0.0127)		2–3 cups/day (HR 0.89, CI [0.86–0.91], <i>P</i> < 0.0001)	
CCF	up to 5 cups/day				2–3 cups/day (HR o.86, CI [0.79–0.94], P = 0.0004)		2–3 cups/day (HR 0.83, (CI [0.79–0.87], P < 0.0001	
All-cause mortality		day (HR 0.73, 8], <i>P <</i> 0.0001)	2-3 cups/day (HR 0.89, CI [0.86-0.93], P < 0.0001)		2-3 cups/day (HR 0.86, CI [0.80-0.91], P < 0.0001)		2–3 cups/day (HR 0.86, CI [0.83–0.89], <i>P <</i> 0.0001	
CV mortality	4–5 cups/day (HR 0.65, CI [0.51–0.83], P < 0.0001)					day (HR 0.74, 9], <i>P</i> = 0.0012)	1 cup/day (HR 0.82, CI [0.74-0.90], P 0.0001)	

Take-Home Messages

Dietary clinical trials are challenging to perform and interpret due to the high number of inherent limitations.

To date, evidence to support, or dispute, low sodium intake as a strategy to reduce cardiovascular outcomes is inconsistent.

Recent data on the associations between egg consumption and risk of CVD mortality, incidence, and risk factors is mixed.

Coffee intake shouldn't be **discouraged** by **physicians** but rather considered part of a **healthy lifestyle**, even in the **presence** or **newly development of cardiovascular disease**.

Sal na hipertensão e insuficiência cardíaca, ovos na dislipidémia e café nas arritmias – respostas definitivas ou dúvidas persistentes?

Nuno Cotrim

IFE Cardiologia HDS